
Pro�le and reorder code execution in Geant4 to
increase performance

A Google Summer of Code Project

Stathis Kamperis

Department of Physics

Aristotle University of Thessaloniki

Greece

ekamperi@gmail.com

September, 2012

.

.

Goals

Pro�le Geant4 to identify potential targets of optimization
(�rst half of GSoC period)

Reorder code execution to improve serial performance (2nd
half)

In reality Goals were interchangeable

.

Methods

Port of Geant4 to Solaris 11/amd64 to access DTrace
pro�ling tool

Tool to compare 2 versions of an application and generate
an HTML report

Tested on FullCMS and Simpli�ed Calorimeter
Example (clickable): http://island.quantumachine.net/~stathis/

geant4/run-5550/smartstack.html

http://island.quantumachine.net/~stathis/geant4/run-5550/smartstack.html
http://island.quantumachine.net/~stathis/geant4/run-5550/smartstack.html

.

DTrace - Introduction 1/2

�D� stands for Dynamic- it dynamically instruments a running
program, by modifying its instructions while it is executing

Deep inspection

Arbitrary instructions
CPU registers
CPU hardware counters, etc

Sophisticated pro�ling (e.g., speculative tracing)

Built-in aggregation functions

count, sum, avg, min, max, stddev, {l,}quantize

Negligible runtime overhead

.

DTrace - Introduction 2/2

Safe to use in production environments

Safety was one of the central architectural decisions upon
DTrace was built
Explains why some common language constructs aren't
supported (e.g., for-loops)

No source code modi�cation of the pro�led application
needed

Can operate on multithreaded programs (has support for
thread-local variables)

Runs on Mac OSX out of the box; Linux port is on the way

Pro�ling done via a simple language called D (resembling C
and awk)

Scripts can be shared, reviewed, reused, made be run
unattended

.

Overview of ideas

Some of the ideas explored

Particle bunching (G4SmartTrackStack)

Caching of cross-sections calculations in hadronic processes
(G4CrossSectionDataStore)

Reducing branch mispredictions in Value() (G4PhysicsVector)

Hard-coded stepping manager (G4SteppingManager)

Caching values of ln(Energy) (G4Track)

.

Particle "bunching" 1/2

De�nition Process same particle types before switching to another
particle type. E.g.,

. . . , e−, e−, . . . , e−, γ, γ, . . . , γ, . . .

Why Better cache utilisation due to access to the same physics list

4-5% persistent reduction in total execution time in FullCMS
experiment (less in Simpli�edCalorimeter)

.

Particle "bunching" 2/2

.

Speculative tracing - A real use case

Problem Some ProcessOneEvent() need much more than average
time to complete

.

Speculative tracing - A real use case

Strategy We are going to trace all ProcessOneEvent() calls, but
commit to our tracing bu�er only those that behave bad.

In this context, "trace" refers to looking at stacks' sizes when
ProcessOneEvent() stalls while processing the event.

.

Speculative tracing - A real use case cont.

Hint The maximum desired size for all stacks was requested to be
400.
e− and γ too often will not honour that limit.

.

Speculative tracing - A real use case cont. - Zoom 1/2

.

Caching cross-sections in hadronic processes

Problem A �amegraph showing CPU utilization identi�ed
cross-section calculations in hadronic processes as a signi�cant
contributor

Idea Cache the values on some bin energy level

Result After many iterations, we have a version where the hits
ratio are very high and there's probably a bene�t of a few
percent (not yet quanti�ed)

TODO Run enough simulations to extract the bene�t. Study the
rami�cations of bin'ing the energy from the physics POV.

.

Not all hadronic processes are cache-friendly 1/2

http://island.quantumachine.net/~stathis/geant4/hits

http://island.quantumachine.net/~stathis/geant4/hits

.

Not all hadronic processes are cache-friendly 2/2

http://island.quantumachine.net/~stathis/geant4/hits

http://island.quantumachine.net/~stathis/geant4/hits

.

Reducing branch mispredictions in G4PhysicsVector::Value()

"Problem" A �amegraph showing branch mispredictions identi�ed
G4PhysicsVector::Value() as a signi�cant o�ender

Idea Try to collapse some of the if-blocks, gaining branch
predictability, but executing more cpu instructions

Result The branch mispredictions reduced (expected), but the
average time spent in that function was actually larger

.

Reducing branch mispredictions in G4PhysicsVector::Value()

Objective Calculate the cache hits ratio in G4PhysicsVector::Value()

dtrace -qn ’
/* 0xc0 is the offset inside Value() where a fast cache hit takes place */
pid$target::_ZN15G4PhysicsVector5ValueEd:c0
{

@branch = count();
}

pid$target::_ZN15G4PhysicsVector5ValueEd:entry
{

@total = count();
}

tick-100ms
{

printa(@branch);
printa(@total);

}’ -c ’/home/stathis/geant4.9.5.p01/bin/full_cms ./bench1_5k.g4’ -o val

.

Reducing branch mispredictions in G4PhysicsVector::Value()

.

Reducing branch mispredictions in G4PhysicsVector::Value()

The bene�t of caching outweighs (as reality dictates) the
penalty of branch mispredictions

The eventual ratio is higher than that I had initially in mind

Lesson learnt: let the system reach its equilibrium before
drawing any conclusions

Lesson learnt: if you optimize 1 micro-benchmark, you may
hurt another (or more)

.

Reducing branch mispredictions in G4PhysicsVector::Value()

Enter the "rabbit" hole

Question ::Value() has many distinct branchs. How fast are
compared to each other ?

Question ::Value() has many distinct branchs. How many
times is each one executed ?

I will skip the DTrace script which is a bit long for a slide, but here
are the graphs:

.

How many times is each branch in ::Value() executed ?

.

How fast are the branches in ::Value() compared to each
other ?

.

Hard-coded stepping manager (G4SteppingManager)

Data For some processes, {AtRest, AlongStep, PostStep}GPIL calls
are placeholders.

Idea Replace them with direct hard-coded calls, instead of relying
on compiled to do the dynamic dispatching

Result No detectable bene�t. But, it was done quickly, so it
deserves further exploration

.

Caching values of ln(Energy) (G4Track)

Idea Cache the logarithm of energy inside G4Track

Exploration A preliminary analysis with DTrace showed that the
anticipated bene�t would be less than 1%

Result It hasn't been actively pursued until now

.

The end

Thank you. Questions?

