Profile and reorder code execution in Geant4 to

increase performance

A Google Summer of Code Project

Stathis Kamperis

Department of Physics
Aristotle University of Thessaloniki
Greece

ekamperi@gmail.com

September, 2012

Goals

m Profile Geant4 to identify potential targets of optimization
(first half of GSoC period)

= Reorder code execution to improve serial performance (2nd
half)

In reality Goals were interchangeable

m Port of Geant4 to Solaris 11/amd64 to access DTrace
profiling tool

m Tool to compare 2 versions of an application and generate
an HTML report

m Tested on FullCMS and Simplified Calorimeter
| | Example (clickable): http://island.quantumachine.net/~stathis/
geant4/run-5550/smartstack.html

http://island.quantumachine.net/~stathis/geant4/run-5550/smartstack.html
http://island.quantumachine.net/~stathis/geant4/run-5550/smartstack.html

DTrace - Introduction 1/2

m “D"” stands for Dynamic- it dynamically instruments a running
program, by modifying its instructions while it is executing
Deep inspection

m Arbitrary instructions

m CPU registers
m CPU hardware counters, etc

Sophisticated profiling (e.g., speculative tracing)
Built-in aggregation functions

m count, sum, avg, min, max, stddev, {l }quantize

Negligible runtime overhead

DTrace - Introduction 2/2

Safe to use in production environments
m Safety was one of the central architectural decisions upon
DTrace was built
m Explains why some common language constructs aren’t
supported (e.g., for-loops)

m No source code modification of the profiled application
needed

Can operate on multithreaded programs (has support for
thread-local variables)

Runs on Mac OSX out of the box; Linux port is on the way

Profiling done via a simple language called D (resembling C
and awk)
m Scripts can be shared, reviewed, reused, made be run
unattended

Overview of ideas

Some of the ideas explored
m Particle bunching (G4SmartTrackStack)

m Caching of cross-sections calculations in hadronic processes
(G4CrossSectionDataStore)

m Reducing branch mispredictions in Value() (G4PhysicsVector)
m Hard-coded stepping manager (G4SteppingManager)
m Caching values of In(Energy) (G4Track)

Particle "bunching" 1/2

Definition Process same particle types before switching to another
particle type. E.g.,

N - Y - B o 0o AN DR

Why Better cache utilisation due to access to the same physics list

4-5% persistent reduction in total execution time in FullCMS
experiment (less in SimplifiedCalorimeter)

Particle "bunching" 2/2

bench1_3k.g4.ic.orig.5550-bench1_3k.g4.ic.patc.5550.dat

25—
2.0-
3‘1 B StackManager
25
g Default
ke Smart
1.0-

1
1e+00

1el02
% Instruction Cache misses (logscale)

]
1e+02

Speculative tracing - A real use case

Problem Some ProcessOneEvent() need much more than average
time to complete

Time needed to process 1 event with the default and smart track manager

Why these spikes?

variable
* default
© smart

Time of ::ProcessOneEvent() in msec
a 2
i

0 500 1000 1500 2000
Event generation (1st, 2nd, 3rd, ..., n-th)

Speculative tracing - A real use case

Strategy We are going to trace all ProcessOneEvent() calls, but
commit to our tracing buffer only those that behave bad.

In this context, "trace" refers to looking at stacks’ sizes when
ProcessOneEvent () stalls while processing the event.

Speculative tracing - A real use case cont.

Hint The maximum desired size for all stacks was requested to be
400.
e~ and ~ too often will not honour that limit.

Size of stacks in SmartTrack when Pr OneEvent() > 4 sec

Y

Mt B A

400

neutrons unclassified
200
L

electrons

gammas

0 200 400 800 400 800 O 400 1000 0 100 200 O

positrons

T T T T T T T
0 50000 100000 150000 200000 250000 300000 350000

Sample index

Speculative tracing - A real use case cont. - Zoom 1/2

Size of stacks in SmartTrack when Pr OneE () > 4 sec

200 40D 200 400 600
L L
f)

200 400 400 1000 0 1000 2500 O
L

f

positrons gammas electrons neutrons unclassified

T T T T T
0 50000 100000 150000 200000

Sample index

Caching cross-sections in hadronic processes

Problem A flamegraph showing CPU utilization identified
cross-section calculations in hadronic processes as a significant
contributor

Idea Cache the values on some bin energy level
Result After many iterations, we have a version where the hits
ratio are very high and there's probably a benefit of a few

percent (not yet quantified)

TODO Run enough simulations to extract the benefit. Study the
ramifications of bin’ing the energy from the physics POV.

Not all hadronic processes are cache-friendly 1/2

http://island.quantumachine.net/~stathis/geant4/hits

Store=nFission~neutron(0xa6cBb70)

hits / (hits + misses)

-ttme % tewe nas

Sample # .

http://island.quantumachine.net/~stathis/geant4/hits

Not all hadronic processes are cache-friendly 2/2

http://island.quantumachine.net/~stathis/geant4/hits

Store=hadElastic~neutron(0xe1799e0)

hits / (hits + misses)

Sample #

http://island.quantumachine.net/~stathis/geant4/hits

Reducing branch mispredictions in G4PhysicsVector::Value()

"Problem" A flamegraph showing branch mispredictions identified
G4PhysicsVector::Value() as a significant offender

Idea Try to collapse some of the if-blocks, gaining branch
predictability, but executing more cpu instructions

Result The branch mispredictions reduced (expected), but the
average time spent in that function was actually larger

Reducing branch mispredictions in G4PhysicsVector::Value

Objective Calculate the cache hits ratio in G4PhysicsVector::Value()

dtrace -gn ’
/% 0xc0 is the offset inside Value() where a fast cache hit takes place */
pid$target::_ZN15G4PhysicsVector5ValueEd: cO
{
@branch = count()-

3

pid$target::_ZN15G4PhysicsVector5ValueEd:entry

@total = count()*

3

tick-100ms

{
printa(@branch)-
printa(@total)-

}’ -c ’/home/stathis/geant4.9.5.p01/bin/full_cms ./bench1_5k.g4’ -o val

Reducing branch mispredictions in G4PhysicsVector::Value()

Evolution of cache hits ratio in a 5.000 events FullCMS simulation

25—

Cache hits %

1 |
50 1

Time (Lrj;in)

Reducing branch mispredictions in G4PhysicsVector::Value()

m The benefit of caching outweighs (as reality dictates) the
penalty of branch mispredictions

m The eventual ratio is higher than that | had initially in mind

m Lesson learnt: let the system reach its equilibrium before
drawing any conclusions

m Lesson learnt: if you optimize 1 micro-benchmark, you may
hurt another (or more)

Reducing branch mispredictions in G4PhysicsVector::Value()

Enter the "rabbit" hole

m Question ::Value() has many distinct branchs. How fast are
compared to each other ?

m Question ::Value() has many distinct branchs. How many
times is each one executed 7

| will skip the DTrace script which is a bit long for a slide, but here
are the graphs:

How many times is each branch in ::Value() executed 7

1.50+00 =

1.0e+08 -

Count

5.00+08 =

Evolution of branch execution counts

Offsets (decimal)
— 14
— 192
— 197
— 216
—— 248
336

56404 1e405
Time (sec)

How fast are the branches in ::Value() compared to each

Evolution of branch average time

—~1e+08 -

Offsets (decimal)

— 14

— 192

— 197
1e+06 - T
—— 248
336

Average CPU time (ns) (logscale,

1e+04-

0e+00 5004 1e+05
Time (sec)

Hard-coded stepping manager (G4SteppingManager)

Data For some processes, {AtRest, AlongStep, PostStep}GPIL calls
are placeholders.

Idea Replace them with direct hard-coded calls, instead of relying
on compiled to do the dynamic dispatching

Result No detectable benefit. But, it was done quickly, so it
deserves further exploration

Caching values of In(Energy) (G4Track)

Idea Cache the logarithm of energy inside G4Track

Exploration A preliminary analysis with DTrace showed that the
anticipated benefit would be less than 1%

Result It hasn’t been actively pursued until now

Thank you. Questions?

