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Deep Learning on Mobile

Robots

Battery
Constrained!

Glasses Self Driving Cars

Source:
http://isca2016.eecs.umich.edu/wp-content/uploads/2016/07/4A-1.pdf
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Why smaller models?

Relative Energy Cost

32 bit int ADD 0.1 1

32 bit float ADD 0.9 9

32 bit Register File 1 10

32 bit int MULT 3.1 31

32 bit float MULT 3.7 37

32 bit SRAM Cache 5 50

32 bit DRAM Memory 640 6400

1 10 100 1000 10000

Source:
http://isca2016.eecs.umich.edu/wp-content/uploads/2016/07/4A-1.pdf
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Matrix Factorization

Weight Pruning

Quantization method

Outline Pruning + Quantization + Encoding
Design small architecture: SqueezeNet
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Matrix Factorization
o Singular Value Decomposition (SVD)
> Flattened Convolutions

Weight Pruning
Outline Quantization method
Pruning + Quantization + Encoding

Design small architecture: SqueezeNet
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Fully Connected Layers:
Singular Value Decomposition

Most weights are in the fully connected layers (according to Denton et al.)

W =USyT
o W € Rmxk U e Rmxm S e Rmxk VT = kak

S is diagonal, d?creasLngfmagnitudeffalong the diagonal
™

Wy

Wy

A4 = .U wy || FT

I'x. . ._-"I I.E. . . . ._-"Il"q_ .-II

http://www.alglib.net/matrixops/general/i/svd1.gif
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Singular Value Decomposition

By only keeping the t singular values with largest magnitude:

W =USVT"
o W E ]:Rka l7 E Rmxt 5 E RtXt VT E IRth
Rank(W) =t
. ™y . ™ 'F‘Hi' ™
A4 = o wy || FT

http://www.alglib.net/matrixops/general/i/svd1.gif
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SVD: Compression

W =USVT, W e R™k J ¢ RM*m ¢ ¢ RMxk T ¢ RkXxk

~

W =USVT W e R™*k [ e RM*Xt § ¢ RIXt T g Rtxk

Storage for W: 0 (mk)
Storage for W: O(mt + t + tk)

Compression Rate: 0 (t(mT,t +1))

Theoretical error: ||AW — AW|| . < s¢,411AllF

Gong, Yunchao, et al. "Compressing deep convolutional networks using vector quantization." arXiv preprint arXiv:1412.6115 (2014).
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SVD: Compression Results

Trained on ImageNet 2012 database, then compressed

5 convolutional layers, 3 fully connected layers, softmax output layer

Approximation method Number of parameters Approximation Reduction Increase
hyperparameters in weights in error
Standard FC NM
FC layer 1: Matrix SVD NK + KM K = 250 13.4x 0.8394%
K = 950 3.5x 0.09%
FC layer 2: Matrix SVD NK + KM K = 350 5.8% 0.19%
K = 650 3.14 % 0.06%
FC layer 3: Matrix SVD NK + KM K = 250 8.1x 0.67%
K = 850 2.4% 0.02%

K refers to rank of approximation, t in the previous slides.

Denton, Emily L., et al. "Exploiting linear structure within convolutional networks for efficient evaluation." Advances in Neural Information
Processing Systems. 2014.
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SVD: Side Benefits

Reduced memory footprint
- Reduced in the dense layers by 5-13x

Speedup: AW, A € R™™ computed in O(nmt + nt? + ntk) instead of
0 (nmk)
> Speedup factor is 0 (m—k)

t(m+t+k)

Regularization

- “Low-rank projections effectively decrease number of learnable parameters,
suggesting that they might improve generalization ability.”

> Paper applies SVD after training

Denton, Emily L., et al. "Exploiting linear structure within convolutional networks for efficient evaluation." Advances in Neural Information
Processing Systems. 2014.
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Convolutions:
Matrix Multiplication

Most time is spent in the convolutional layers

kernel
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F(x,y)=1xW
http://stackoverflow.com/questions/15356153/how-do-convolution-matrices-work
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Flattened Convolutions

Replace ¢ X y X x convolutionswithc X 1 x 1,1 xyx1,and 1 X1 X x
convolutions

(a) 3D convolution (b) 1D convolutions over different directions

Jin, Jonghoon, Aysegul Dundar, and Eugenio Culurciello. "Flattened convolutional neural networks for feedforward acceleration." arXiv
preprint arXiv:1412.5474 (2014).
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Flattened Convolutions

Y C

X
Fay)=1«W =) | ) | Y Iex=x,y=ya( |BG) |r(x)
x'=1 \y'=1 \c=1

a € RE,BERY,y R

Compression and Speedup:
- Parameter reduction: O(XYC)to O(X +Y + C)

> Operation reduction: 0(mnCXY) to O(mn(C + X + Y)) (where Wy € R™*™)

Jin, Jonghoon, Aysegul Dundar, and Eugenio Culurciello. "Flattened convolutional neural networks for feedforward acceleration." arXiv
preprint arXiv:1412.5474 (2014).
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Flattening = MF

X Y C
Fan=), ), Z (e,x =%,y = y)a(®) B y(x')

XS 1yY—1€

ZZZ“C’“"“ y =y ) W(e,x',y")

x=1y’'=1c=1

W=a X S ®y,Rank(W) =1
Ws = Yi=1arx ® B ® vk, Rank K
SVD: Can reconstruct the original matrix as A = Y x_1 wu, Qy,

Denton, Emily L., et al. "Exploiting linear structure within convolutional networks for efficient evaluation." Advances in Neural Information
Processing Systems. 2014.
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Flattening: Speedup Results

3 convolutional layers (5x5 filters) with 96, 128, and 256
channels

Used stacks of 2 rank-1 convolutions

o
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Jin, Jonghoon, Aysegul Dundar, and Eugenio Culurciello. "Flattened convolutional neural networks for feedforward acceleration." arXiv
preprint arXiv:1412.5474 (2014).
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Outline

Matrix Factorization

Weight Pruning

> Magnitude-based method
o Iterative pruning + Retraining
> Pruning with rehabilitation

> Hessian-based method
Quantization method
Pruning + Quantization + Encoding

Design small architecture: SqueezeNet
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Magnitude-based method: Iterative
Pruning + Retraining

(
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pruning
neurons

Han, Song, et al. "Learning both weights and connections for efficient neural network." NIPS. 2015.
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Magnitude-based method: Iterative
Pruning + Retraining (Algorithm)

1. Choose a neural network architecture.

2. Train the network until a reasonable solution is obtained.
3. Prune the weights of which magnitudes are less than a threshold t.
4. Train the network until a reasonable solution Is obtained.

5. Iterate to step 3.

Han, Song, et al. "Learning both weights and connections for efficient neural network." NIPS. 2015.
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Magnitude-based method: Iterative
Pruning + Retraining (Experiment:

AlexNet)

“Remaining Parameters " Pruned Parameters

convl 211M 88% 84% 84%

conv2 307K 448M 52% 38% 33% 45M

conv3 885K 299M 37% 35% 18%

conv4 663K 224M 40% 37% 14% 30M

convb 442K 150M 34% 37% 14%

fcl 38M 75M 36% 9% 3% 15M

fc2 17M 34M 40% 9% 3%

fc3 4M 8M 100% 25% 10 M —
(o) (o) 0,

Total 61M 1.58B 54% 11% 30% S LD ™

O N 9 95 o
T Y AT S\
NS S S O
KON OO O xS

Han, Song, et al. "Learning both weights and connections for efficient neural network." NIPS. 2015.
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Magnitude-based method: Iterative
Pruning + Retraining (Experiment:

Tradeoff)

O-convl  “conv2 TrFconvd < convd ~*-convs

0% X—E—f%xa-xa{ﬂ-—-xﬁx 0%

-5% \ -5%
2} w
g 4
- |

2-10% 2'-10%
3 3
Q Q
Q Q
<C <

-15% -15%

-20% -20%

0% 25% 50% 75% 100% 0% 25% 50% 75% 100%

#Parameters #Parameters

Han, Song, et al. "Learning both weights and connections for efficient neural network." NIPS. 2015.
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Pruning with rehabilitation: Dynamic
Network Surgery (Motivation)

Pruned connections have no chance to come back.

Incorrect pruning may cause severe accuracy loss.
Avoid the risk of irretrievable network damage .

Improve the learning efficiency.

Guo, Yiwen, et al. "Dynamic Network Surgery for Efficient DNNs." NIPS. 2016.
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Pruning with rehabilitation: Dynamic
Network Surgery (Formulation)

W, denotes the weights, and T, denotes the corresponding 0/1 masks.

min L(W,OTy) ~ s.t. T, = h (W), v(i,j) €T
k't k

> @ is the element-wise product. L(+) is the loss function.

Dynamic network surgery updates only W,. T is updated based on h; ().

( 0 a= |Wk(lJ)|

hk(Wk(i'j)) = Tk(w) a, < |Wk(u)| < by
1 by, < |Wk(lJ)|
° ai IS the pruning threshold. b, = a; + t, where t is a pre-defined small margin.

Guo, Yiwen, et al. "Dynamic Network Surgery for Efficient DNNs." NIPS. 2016.

NETWORK COMPRESSION AND SPEEDUP
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Pruning with rehabilitation: Dynamic
Network Surgery (Algorithm)

1. Choose a neural network architecture.

2. Train the network until a reasonable solution is obtained.
3. Update T, based on h(+).

4. Update W, based on back-propagation.

5. Iterate to step 3.

Guo, Yiwen, et al. "Dynamic Network Surgery for Efficient DNNs." NIPS. 2016.
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Pruning with rehabilitation: Dynamic
Network Surgery (Experiment on AlexNet)

Parameters (Han et al. 2015) | Parameters (DNS)

convl 84% 53.8%
conv2 307K 38% 40.6%
conv3 885K 35% 29.0%
conv4 664K 37% 32.3%
conv5 443K 37% 32.5%
fcl 38M 9% 3.7%
fc2 17M 9% 6.6%
fc3 4M 25% 4.6%
Total 61M 11% 5.7%

Guo, Yiwen, et al. "Dynamic Network Surgery for Efficient DNNs." NIPS. 2016.
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Outline

Matrix Factorization

Weight Pruning
> Magnitude-based method

> Hesslan-based method
- Diagonal Hessian-based method
> Full Hessian-based method

Quantization method
Pruning + Quantization + Encoding

Design small architecture: SqueezeNet

NETWORK COMPRESSION AND SPEEDUP
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Diagonal Hessian-based method:
Optimal Brain Damage

The idea of model compression & speed up: traced by to 1990.

Actually theoretically more “optimal” compared with the current state of
the art, but much more computational inefficient.

Delete parameters with small “saliency”.
o Saliency: effect on the training error

Propose a theoretically justified saliency measure.
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Diagonal Hessian-based method:
Optimal Brain Damage (Formulation)

Approximate objective function E with Taylor series:

1« 0%F
Z 5 i T3 Zlaz “u + 2%

auiauj

Su;6u; + 0(||sU|I1°)

Deletion after training has converged: local minimum with gradients equal
0.

Neglect cross terms

SF ——Z 62ul

laz

LeCun, Yann, et al. "Optimal brain damage." NIPs. Vol. 2. 1989.
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Diagonal Hessian-based method:
Optimal Brain Damage (Algorithm)

1. Choose a neural network architecture.

2. Train the network until a reasonable solution is obtained.
3. Compute the second derivatives for each parameters.

9°E 5
U™ .

4. Compute the saliencies for each parameter S, = 32,
k

5. Sort the parameters by saliency and delete some low-saliency
parameters

6. Iterate to step 2

LeCun, Yann, et al. "Optimal brain damage." NIPs. Vol. 2. 1989.
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Diagonal Hessian-based method: Optimal
Brain Damage (Experiment: OBD vs.
Magnitude)

OBD vs. Magnitude

10
14 . 2)

12

Deletion based on 10 S Magnitude
saliency performs better

OBD SR

0 500 1000 1500 2000 2500

LeCun, Yann, et al. "Optimal brain damage." NIPs. Vol. 2. 1989. Parameters
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Diagonal Hessian-based method: Optimal
Brain Damage (Experiment: Retraining)

16 16

How retraining 14 (a) 1 (b)
helps? 12 12
10 “ Without retraining 10} " Without retraining
LT-] 87 [-TJ 8” o)
A 8 n "
= j > °
oh 4 o ) ob 4. Retraining -
— 2 Retraining - — 2/ ® o o  "Cooocq
0 * * o - E e S99 ce 0l
-2 : : : : -2 | | :
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Parameters Parameters

Figure 2: Objective function (in dB) versus number of parameters, without re-
training (upper curve), and after retraining (lower curve). Curves are given for the
training set (a) and the test set (b).

LeCun, Yann, et al. "Optimal brain damage." NIPs. Vol. 2. 1989.
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Full Hessian-based method: Optimal
Brain Surgeon

Motivation:
> A more accurate estimation of saliency.

o Optimal weight updates.

Advantage:
o More accuracy estimation with saliency.
> Directly provide the weight updates, which minimize the change of objective function.

Disadvantage
- More computation compared with OBD.
- Weight updates are not based on minimizing the objective function.

Hassibi, Babak, and David G. Stork. "Second order derivatives for network pruning: Optimal brain surgeon.” NIPS, 1993
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Full Hessian-based method: Optimal
Brain Surgeon (Formulation)

Approximate objective function E with Taylor series:

T
SE = (a—E) . W +§5wT “H - sw + O(||sW]?)

ow
o With constraint eqT ow+w, =0

We assume the trained network with local minimum and ignore high order
terms. Solve it through Lagrangian form:

Wq -1, _
T H e, and L, =

> L, Is saliency for weight w,,

ow = — T

Hassibi, Babak, and David G. Stork. "Second order derivatives for network pruning: Optimal brain surgeon.” NIPS, 1993
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Full Hessian-based method: Optimal
Brain Surgeon (Algorithm)

1. Choose a neural network architecture.

2. Train the network until a reasonable solution Is obtained.

3. Find the g that gives the smallest saliency L, and decide to delete q or
stop pruning.

4. Update all weights based on calculated dw.

5. Iterate to step 3.

Hassibi, Babak, and David G. Stork. "Second order derivatives for network pruning: Optimal brain surgeon.” NIPS, 1993
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Full Hessian-based method: Optimal
Brain Surgeon

i
Hassibi, Babak, and David G. Stork. "Second order derivatives for network pruning: Optimal brain surgeon.” NIPS, 1993
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Outline

Matrix Factorization
Weight Pruning

Quantization method

> Full Quantization
° Fixed-point format
o Code book

o Quantization with full-precision copy
Pruning + Quantization + Encoding

Design small architecture: SqueezeNet
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Full Quantization : Fixed-point
format

Limited Precision Arithmetic

> [QI.QF], where QI and QF correspond to the integer and the fractional part of the
number.

o The number of integer bits (IL) plus the number of fractional bits (FL) yields the total
number of bits used to represent the number.

- WL =1L + FL.

> Can be represented as (IL, FL).

o (IL, FL) limits the precision to FL bits.

- (IL,FL) sets the range to [—2/L~1, 2iL=1 — 2—FL],

Gupta, Suyog, et al. "Deep Learning with Limited Numerical Precision." ICML. 2015.
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Full Quantization : Fixed-point
format (Rounding Modes)

Define |x] as the largest integer multiple of e = 27L,

Round-to-nearest:

{ x| |x] < x < |x] 4=
> Round(x,{IL,FL)) = € :
x| +e lx]+s<sx<|x]+e

Stochastic rounding (unbiased):

x—x|

lx] w.p. 1-—
> Round(x,(IL,FL)) =

x—|x]

lx] +€ w.p.

€

If x lies outside the range of (IL, FL), we saturate the result to either the lower or
the upper limit of (IL, FL):

Gupta, Suyog, et al. "Deep Learning with Limited Numerical Precision." ICML. 2015.
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Multiply and accumulate (MACC)
operation

During training:

1. a and b are two vectors with fixed point format (IL, FL).

2. Compute z = Y& a;b;.
> Results a fixed point number with format (2 X IL,2 X FL).

3. Covert and round z back to fixed point format (IL, FL).
During testing:
With fixed point format (/L, FL).

Gupta, Suyog, et al. "Deep Learning with Limited Numerical Precision." ICML. 2015.
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Full Quantization: Fixed-point format
(Experiment on MNIST with CNNs)

WL =16
| 3 | | T —§ 1 |
1 n » Round to nearest, FL 14 «««---«-
25 § Y Round to nearest, FL 12
5 g it ) Stochastic rounding, FL 14 ———
o 0.1 1 s 2 g EE  i: Stochastic rounding, FL 12 ———
= ol O j Float
= o
E : g
= 001 =
0001 | | | | | | | - 05 | | | | | |
@) 0 20 40 60 80 100 120 (b) O 20 40 60 80 100 120
Training epoch Training epoch

Gupta, Suyog, et al. "Deep Learning with Limited Numerical Precision." ICML. 2015.
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Full Quantization: Fixed-point format
(Experiment on CIFAR10 with fully
connected DNNs)

WL =16 WL =16
2 . | l.: | | | 50 * l?}.‘;}:’;fi | | | | |

18 : 45 FEie Round to nearest, FL 14 «-------

1.6 N AY Stochastic rounding, FL 14 ———
s 14 S 40 - ; Stochastic rounding, FL 12 ————
- S
o 12 = Float
= <]
£ 1 s 99
s 08 o
= 06 = 0

0.4 , 25 |-

0.2 - -

| | | | 1 20 | | | 1 |
@@ 0 20 40 60 80 100 120 (b) O 20 40 60 80 100 120
Training epoch Training epoch

Gupta, Suyog, et al. "Deep Learning with Limited Numerical Precision." ICML. 2015.
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Full Quantization: Code book

Quantization using k-means
- Perform k-means to find k centers {c,} for weights W'

- W;; = ¢, where min||W;; —c,||".
Z
o Compression ratio: 32/log, k (codebook itself is negligible).

Product Quantization
o Partition W € R™*" colum-wise into s submatrices W = [W, W?,..-,W*].

> Perform k-means for elements in W' to find k centers {c.} .
—. . ] : 112

o Wj‘ = c. where mzln”Wj‘ — c}” :

- Compression ratio: 32mn/(32kn + log, k ms)

Residual Quantization
> Quantize the vectors into k centers.
> Then recursively quantize the residuals for t iterations.
o Compression ratio: m/(tk + log, k - tn)

Gong, Yunchao, et al. "Compressing deep convolutional networks using vector quantization." arXiv preprint arXiv:1412.6115 (2014).
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Full Quantization: Code book
(Experiment on PQ)

100 100
- PQ (k=16) -PQ (k=16) i
-5-PQ (k=8) -©-PQ (k=8)
90/ -0-PQ (k=4) | : A 902 PQ (k=4)
2 o 3 )
=~ . . - R 4 -~ L P |
5 % _ 5 % :
w w
§ 70 e § 70
= o =
g : g
5 G
BO- e
L.
40

1 15 2 25
Segment size

(a) PQ for X-axis

3 35 4

1

15 2 2.5 3
Segmen size

(b) PQ for Y-axis

3.5 4

Figure 1: Comparison of PQ compression with aligned segment size for accuracy@1.
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Figure 2: Comparison of PQ compression with aligned compression rate for accuracy@1. We can
clearly find when taking codebook size into account, using more centers do not necessarily lead to
better accuracy with same compression rate. See text for detailed discussion.
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Full Quantization: Code book

90— ™ TR 70 : ,
85 N Pt | - Original g
@ | Original 60" Binary - |
ASO_.. l.,,... Binary . R -[1-SVD
X 75 -E-SVD : > ©-KM |
5 70 ©-KM Tl “cPQ(k=8) | ! 1
5 o —*-PQ (k=8) T ©-RQ (k=256) | -
565 o -0-RQ (k=256) | 5 40 S SO |
8 60 ’ | 1 g
®) 50- i @)
20¢ 4 -
45- - |
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Compression Rate

(b) Accuracy@5

Compression Rate

(a) Accuracy@1

Figure 3: Comparison of different compression methods on ILSVRC dataset.
Gong, Yunchao, et al. "Compressing deep convolutional networks using vector quantization." arXiv preprint arXiv:1412.6115 (2014).
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Outline

Matrix Factorization
Weight Pruning

Quantization method
o Full quantization

> Quantization with full-precision copy
o Binnaryconnect
> BNN

Design small architecture: SqueezeNet
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Quantization with full-precision copy:
Binaryconnect (Motivation)

Use only two possible value (e.g. +1 or -1) for weights.

Replace many multiply-accumulate operations by simple accumulations.

Fixed-point adders are much less expensive both in terms of area and
energy than fixed-point multiply-accumulators.

Courbariaux, et al. "Binaryconnect: Training deep neural networks with binary weights during propagations." NIPS. 2015
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Quantization with full-precision copy:
Binaryconnect (Binarization)

Deterministic Binarization:

W — +1 ifw=0
b —1 otherwise

Stochastic Binarization:
) _|+1 withprobability p = a(wy)
"b =1 -1 withprobability 1 —p

> a(x) = clip (X—H 0, 1) max (O, min (1 x—ﬂ))

Stochastic binarization is more theoretically appealing than the
deterministic one, but harder to implement as it requires the hardware to
generate random bits when guantizing.

Courbariaux, et al. "Binaryconnect: Training deep neural networks with binary weights during propagations." NIPS. 2015
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Quantization with full-precision copy:
Binaryconnect

1. Given the DNN input, compute the unit activations layer by layer,
leading to the top layer which is the output of the DNN, given its input.
This step is referred as the forward propagation.

2. Given the DNN target, compute the training objective’s gradient w.r.t.
each layer’s activations, starting from the top layer and going down layer
by layer until the first hidden layer. This step is referred to as the
backward propagation or backward phase of back-propagation.

3. Compute the gradient w.r.t. each layer’s parameters and then update
the parameters using their computed gradients and their previous values.
This step is referred to as the parameter update.

Courbariaux, et al. "Binaryconnect: Training deep neural networks with binary weights during propagations." NIPS. 2015
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Quantization with full-precision copy:
Binaryconnect

BinaryConnect only binarize the weights during
the forward and backward propagations (steps
1 and 2) but not during the parameter update
(step 3).

Courbariaux, et al. "Binaryconnect: Training deep neural networks with binary weights during propagations." NIPS. 2015




Quantization with full-precision copy:
Binaryconnect

1. Binarize weights and perform forward pass.

2. Back propagate gradient based on binarized weights.
3. Update the full-precision weights.
4. Iterate to step 1.

Courbariaux, et al. "Binaryconnect: Training deep neural networks with binary weights during propagations." NIPS. 2015

NETWORK COMPRESSION AND SPEEDUP 54




Quantization with full-precision copy:

Binaryconnect

Method MNIST CIFAR-10 SVHN
No regularizer 1.30 £ 0.04% 10.64% 2.44%
BinaryConnect (det.) 1.29 £ 0.08% 9.90% 2.30%
BinaryConnect (stoch.) 1.18 = 0.04% 8.27% 2.15%
50% Dropout 1.01 4+ 0.04%

Maxout Networks [29 0.94% 11.68% 2.47%
Deep L2-SVM [30] 0.87 %

Network in Network [31 10.41% 2.35%
DropConnect [21 1.94%
Deeply-Supervised Nets [32] 9.78% 1.92%

Courbariaux, et al. "Binaryconnect: Training deep neural networks with binary weights during propagations." NIPS. 2015
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Quantization with full-precision copy:
Binarized Neural Networks (Motivation)

Neural networks with both binary weights and
activations at run-time and when computing the
parameters’ gradient at train time.

Courbariaux, Matthieu, et al. "Binarized neural networks: Training deep neural networks with weights and activations constrained to+ 1 or-
1." arXiv preprint arXiv:1602.02830 (2016).




Quantization with full-precision copy:
Binarized Neural Networks

Propagating Gradients Through Discretization (“straight-through estimator
”)
> q = Sign(r)
> Estimator g, of the gradientg—g

o Straight-through estimator of g—::

©Yr = gqllrlsl
o Can be viewed as propagating the gradient through hard tanh

Replace multiplications with bit-shift
> Replace batch normalization with shift-based batch normalization
- Replace ADAM with shift-based AdaMax

Courbariaux, Matthieu, et al. "Binarized neural networks: Training deep neural networks with weights and activations constrained to+ 1 or-
1." arXiv preprint arXiv:1602.02830 (2016).
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Quantization with full-precision copy:
Binarized Neural Networks

Data set MNIST SVHN CIFAR-10
Binarized activations+weights, during training and test

BNN (Torch7) 1.40% 2.53% 10.15%

BNN (Theano) 0.96% 2.80% 11.40%

Committee Machines’ Array (Baldassi et al., 2015) 1.35% - -
Binarized weights, during training and test

BinaryConnect (Courbariaux et al., 2015) 1.29£ 0.08% 2.30% 9.90%
Binarized activations+weights, during test

EBP (Cheng et al., 2015) 224+ 0.1% - -

Bitwise DNNs (Kim & Smaragdis, 2016) 1.33% - -

Ternary weights, binary activations, during test
(Hwang & Sung, 2014) 1.45% - -
No binarization (standard results)

Maxout Networks (Goodfellow et al.) 0.94% 2.47% 11.68%

Network in Network (Lin et al.) - 2.35% 10.41%

Gated pooling (Lee et al., 2015) - 1.69% 7.62%

Courbariaux, Matthieu, et al. "Binarized neural networks: Training deep neural networks with weights and activations constrained to+ 1 or-
1." arXiv preprint arXiv:1602.02830 (2016).
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Quantization with full-precision copy:
Binarized Neural Networks

GPU KERNELS' EXECUTION TIMES

N | . B= HEB

MATRIX MULT. (9 MNISTMLP (s) MLP TEST ERROR (%)

w

ra

(WY

W BASELINE KERNEL mCUBLAS/THEANO m XNOR KERNEL

Courbariaux, Matthieu, et al. "Binarized neural networks: Training deep neural networks with weights and activations constrained to+ 1 or-
1." arXiv preprint arXiv:1602.02830 (2016).
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Outline

Matrix Factorization
Weight Pruning
Quantization method

Pruning + Quantization + Encoding
- Deep Compression

Design small architecture: SqueezeNet
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Pruning + Quantization + Encoding:
Deep Compression

Quantization: less bits per weight

Pruning: less number of weights sy - -== S, Huffman Encoding
/ { )
—TTEEEEEEEEES ~ \ ————— - — ~
e A [ [Cluster the Weights | ’ \
I ( ] 1 : . @ J : : I
I | Train Connectivity ; | | I . l
original | \ | same L ) ! same ! [Encode Welghts] | same
network I 2 ! accuracy Generate Code Book ,accuracy | jaccuracy
! AN I I l
E> ! | Prune Connections ! E> | 37 g l E> : | E>
. . I 4 [ | 1
iRl — 2 (e e g § 720 v maen | | 254
s w | | (with Code Book reduction’  reduction
: Train Weights . L <z . ! ‘. !
[ J e [ N N -
‘. ! : Retrain Code Book :
e eee e —=— - - ‘\ \ ) 7
7/

Courbariaux, Matthieu, et al. "Binarized neural networks: Training deep neural networks with weights and activations constrained to+ 1 or-
1." arXiv preprint arXiv:1602.02830 (2016).
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Pruning + Quantization + Encoding:
Deep Compression

1. Choose a neural network architecture.

2. Train the network until a reasonable solution Is obtained.

3. Prune the network with magnitude-based method until a reasonable
solution is obtained.

4. Quantize the network with k-means based method until a reasonable
solution is obtained.

5. Further compress the network with Huffman coding.

Courbariaux, Matthieu, et al. "Binarized neural networks: Training deep neural networks with weights and activations constrained to+ 1 or-
1." arXiv preprint arXiv:1602.02830 (2016).
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Pruning + Quantization + Encoding:
Deep Compression

Table 4: Compression statistics for AlexNet. P: pruning, Q: quantization, H:Huffman coding.

. Weight Weight Index Index Compress Compress

Layer | SWeights X,’;"g"“% bits  bits bits  bits ate sate
(P+Q  (P+Q+H) (P+Q) (P+Q+H) (P+Q) (P+Q+H)

convl | 35K 84% 8 6.3 4 1.2 32.6% 20.53%
conv2 | 307K 38% 8 55 4 2.3 14.5% 9.43%
conv3 | 885K 35% 8 5.1 4 2.6 13.1% 8.44%
conv4 | 663K 37% 8 512 4 2.5 14.1% 9.11%
conv5 | 442K 37% 8 5.6 4 2.5 14.0% 9.43%
fc6 38M 9% S 39 4 3.2 3.0% 2.39%
fc7 1™ 9% 5 3.6 4 3.7 3.0% 2.46%
fc8 4M 25% 5 4 4 32 7.3% 5.85%
Total | 61M 11%09x) 5.4 4 4 3.2 3.7% (27x) 2.88% (35x)

Table 5: Compression statistics for VGG-16. P: pruning, Q:quantization, H:Huffman coding.

; Weigh Weight Index Index Compress Compress

Layer #Weights (VPVt)alghts% bits bits bits bits rate rate
P+Q) (P+Q+H) (P+Q) (P+Q+H) (P+Q) (P+Q+H)

convl_1 | 2K 58% 8 6.8 5 1.7 40.0% 29.97%
convl 2 | 37K 22% 8 6.5 5 2.6 9.8% 6.99%
conv2_1 | 74K 34% 8 5.6 S 2.4 14.3% 891%
conv22 | 148K 36% 8 5.9 5 23 14.7% 9.31%
conv3_1 | 295K 53% 8 4.8 5 1.8 21.7% 11.15%
conv32 | 590K 24% 8 4.6 5 29 9.7% 5.67%
conv3_3 | 590K 42% 8 4.6 5 22 17.0% 8.96%
convd_1 | IM 32% 8 4.6 5 2.6 13.1% 7.29%
conv4 2 | 2M 27% 8 42 5 29 10.9% 5.93%
conv4 3 | 2M 34% 8 44 5 2.5 14.0% 7.47%
convS_1 | 2M 35% 8 4.7 S 2.5 14.3% 8.00%
conv52 | 2M 29% 8 4.6 5 2.7 11.7% 6.52%
convS_3 | 2M 36% 8 4.6 5 2.3 14.8% 7.79%
fc6 103M 4% 5 3.6 5 35 1.6% 1.10%
fc7 17M 4% 5 4 5 43 1.5% 1.25%
fc8 4M 23% S 4 5 34 7.1% 5.24%
Total 138M 7.5%(13x) 6.4 4.1 ) 3.1 32% (31x) 2.05% (49x)
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Outline

Matrix Factorization

Weight Pruning

Quantization method

Pruning + Quantization + Encoding

Design small architecture: SqueezeNet
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Design small architecture:
SqueezeNet

Compression scheme on pre-trained model
VS

Design small CNN architecture from scratch
(also preserve accuracy?)
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SqueezeNet Design Strategies

Strategy 1. Replace 3x3 filters with 1x1 filters
o Parameters per filter: (3x3 filter) = 9 * (1x1 filter)

Strategy 2. Decrease the number of input channels to 3x3 filters
o Total # of parameters: (# of input channels) * (# of filters) * ( # of parameters per filter)

Strategy 3. Downsample late in the network so that convolution layers
have large activation maps

o Size of activation maps: the size of input data, the choice of layers in which to
downsample in the CNN architecture

landola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size."
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https://arxiv.org/pdf/1602.07360v4.pdf

Microarchitecture — Fire Module

Fire module Is consist of:

> A squeeze convolution layer
o full of s,,, # of 1x1 filters

1x1 convolution filters

1x1 and 3x3 convolution filters

Y
,””””000 e ICEE] ICEE
SV 3V Y ool soof ooof 5006

500l 555

RelU ‘

Figure 1: Microarchitectural view: Organization of convolution filters in the Fire module. In this
example, siz1 = 3, e1z1 = 4, and e3y3 = 4. We illustrate the convolution filters but not the
activations.

> An expand layer
o mixture of e, # of 1x1 and ej,; # of 3x3 filters

000 000

landola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size."
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Microarchitecture — Fire Module

Strategy 2. Decrease the number of input channels to 3x3
filters
Total # of parameters: (# of input channels) * (# of filters)
* ( # of parameters per filter)

Squeeze Layer
Sets;,; < (e, +€3,),
limits the # of input channels to 3*3 filters

How much can we limits,,,?

1x1 and 3x3 convolution filters

000
000

000 000 000
000 000 000
000 000 000

~\ Strategy 1. Replace 3*3 filters with 1*1 filters

=] Parameters per filter: (3*3 filter) =9 * (1*1 filter)
Figure 1: Microarchitectural view: Organization of convolution filters in the Fire module. In this How much can we replace 3*3 with 1*1?

example, siz;1 = 3, e1z1 = 4, and e3p3 = 4. We illustrate the convolution filters but not the 3

activations. (elxl VS e3x3 )

landola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size."
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Parameters in Fire Module

The # of expanded filter(e;)

Squeeze Ratio (SR) Percentage of 3x3 filters (pct;,;)
e =e; +e; 0.1250.25 0.5 0.75 1.0 1.0 12,5 25.037.5 50.0 62.5 75.0 87.5 99.0
l 1,1x1 1,3x3 — 100 100 —
; ; 9 SqueezeNet 85.3% 86/0% T ) b : 85.3% . 85.3
The % of 3x3 filter in expanded layer(pcty;) < 803% accuracy  sccuracy | < 763% | accuray. | accorhcy
— % g gol.. . Y _—e— e are g e eredt ] < gob accuracyy ¢ ...t
€; ox3 = PClgys ™ € S aEMBof | 13 MB of 18 MB of S © 1 13MBof ; 21 MB of
. I - hts We'ShtS wel:ghts : 9 57MBof :  weights 5 - weights
The Squeeze Ratio(SR) S ol N S gol . weghts i 0]
[Te} (T} . . '
— * & . L
S; 101 = SR e, o o i é i S I
2 A0f- T e s 2 TR VTT] IR b
l—'| . . . . : '-|| . . . . . . : . .
17 o 5 | | L7 A
= 20 R AEREEEE R RS e & 20| R R P R Leceenn RS R foaaass
o : : : : : o : . . . . . : : X
£ — : ; i £ : P :
48 7.6 13 19 24 0 57 7.4 93 11 13 15 17 19 21
MB of weights in model MB of weights in model
(a) Exploring the impact of the squeeze ratio (SR) (b) Exploring the impact of the ratio of 3x3 filters in
on model size and accuracy. expand layers (pctsz3) on model size and accuracy.

Figure 3: Microarchitectural design space exploration.

landola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size."
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—

Macroarchitecture

Strategy 3. Downsample late in the network so that

convolution layers have large activation maps <
Size of activation maps: the size of input data, the choice
of layers in which to downsample in the CNN architecture

These relative late placements of pooling concentrates activation
maps at later phase to preserve higher accuracy

global avgpool

"labrador
retriever
dog "

landola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size."
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Macroarchitecture

Table 1: SqueezeNet architectural dimensions. (The formatting of this table was inspired by the
Inception2 paper (loffe & Szegedy, 2015).)

inputimage | 224x224x3 - -

convl 111x111x96 [ 7x7/2 (x96) | 1 100% (7x7) 6hit 14,208 14,208

maxpooll 55x55x96 3x3/2 0

fire2 55x55x128 2 16 64 64 100% | 100% | 33% | 6bit 11,920 5,746

fire3 55x55x128 2 16 64 64 100% | 100% | 33% | 6bit 12,432 6,258

fired 55X55x256 2 32 128 128 | 100% | 100% | 33% | 6bit 45,344 20,646

maxpool4 27x27x256 3x3/2 0

fires 27x27%256 2 32 128 128 | 100% | 100% | 33% | 6bit 49,440 24,742

fire6 27x27x384 2 48 192 192 | 100% | 50% | 33% | 6bit 104,880 44,700

fire7 27x27x384 2 48 192 192 50% | 100% | 33% | 6bit 111,024 46,236

fire8 27x27x512 2 64 256 256 | 100% | 50% | 33% | 6bit 188,992 77,581

maxpool8 13x12x512 3x3/2 0

fire 13x13x512 2 64 256 | 256 | 50% | 100% | 30% | 6bit | 197,184 77,581 global avgpool

conv10 13x13x1000 | 1x1/1 (x1000) | 1 20% (3x3) 6bit | 513,000 103,400 "labrador

retriever

avgpool10 | 1x1x1000 13x13/1 0 | | dog"
—" T A . j| 1,248,424 | 421,098
activations parameters compression info (total) (total)

landola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size."
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Evaluation of Results

Table 2: Comparing SqueezeNet to model compression approaches. By model size, we mean the

number of bytes required to store all of the parameters in the trained model.

CNN architecture Compression Approach Data Original — Reduction in Top-1 Top-5
Type Compressed Model Model Size ImageNet ImageNet
Size vs. AlexNet Accuracy Accuracy
AlexNet None (baseline) 32 bit 240MB 1x 57.2% 80.3%
AlexNet SVD (Denton et al., 32 bit 240MB — 48MB 5x 56.0% 79.4%
2014)
AlexNet Network Pruning (Han 32 bit 240MB — 27MB 9x 57.2% 80.3%
et al., 2015b)
AlexNet Deep 5-8 bit 240MB — 6.9MB 35x 57.2% 80.3%
Compression (Han
et al., 2015a)
SqueezeNet (ours) None 32 bit 4.8MB 50x 57.5% 80.3%

landola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size."
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Further Compression on 4.8M?

Table 2: Comparing SqueezeNet to model compression approaches. By model size, we mean the
number of bytes required to store all of the parameters in the trained model.

CNN architecture Compression Approach Data Original — Reduction in Top-1 Top-5
Type Compressed Model Model Size ImageNet ImageNet
Size vs. AlexNet Accuracy Accuracy
AlexNet None (baseline) 32 bit 240MB 1x 57.2% 80.3%
AlexNet SVD (Denton et al., 32 bit 240MB — 48MB 5x 56.0% 79.4%
2014)
AlexNet Network Pruning (Han 32 bit 240MB — 27MB 9x 57.2% 80.3%
et al., 2015b)
AlexNet Deep 5-8 bit 240MB — 6.9MB 35x 57.2% 80.3%
Compression (Han
et al., 2015a)
SqueezeNet (ours) None 32 bit 4. 8MB S50x 57.5% 80.3%
SqueezeNet (ours) Deep Compression 8 bit 4.8MB — 0.66MB 363x 57.5% 80.3%
SqueezeNet (ours) Deep Compression 6 bit 4.8MB — 0.47MB 510x 57.5% 80.3%

Further Compression
> Deep Compression + Quantization

landola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size."
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Takeaway
Points

Compress Pre-trained Networks

* On Single Layer:
* Fully connected layer: SVD
- Convolutional layer: Flattened Convolutions

* Weight Pruning:
» Magnitude-based pruning method is simple and
effective, which is the first choice for weight pruning.

 Retraining is important for model compression.

« Weight quantization with the full-precision copy can
prevent gradient vanishing.

 Weight pruning, quantization, and encoding are
independent. We can use all three methods together for
better compression ratio.
Design a smaller CNN architecture

- Example: SqueezeNet
« Use of Fire module, delay pooling at later stage
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