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Source: 
http://isca2016.eecs.umich.edu/wp-content/uploads/2016/07/4A-1.pdf
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Why smaller models?
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Operation Energy [pJ] Relative Cost 

32 bit int ADD 0.1 1

32 bit float ADD 0.9 9

32 bit Register File 1 10

32 bit int MULT 3.1 31

32 bit float MULT 3.7 37

32 bit SRAM Cache 5 50

32 bit DRAM Memory 640 6400

Source: 
http://isca2016.eecs.umich.edu/wp-content/uploads/2016/07/4A-1.pdf
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Design small architecture: SqueezeNet 
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Outline

Matrix Factorization
◦ Singular Value Decomposition (SVD)

◦ Flattened Convolutions

Weight Pruning

Quantization method

Pruning + Quantization + Encoding 

Design small architecture: SqueezeNet 
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Fully Connected Layers: 
Singular Value Decomposition
Most weights are in the fully connected layers (according to Denton et al.)

𝑊 = 𝑈𝑆𝑉⊤

◦ 𝑊 ∈ ℝ𝑚×𝑘 , 𝑈 ∈ ℝ𝑚×𝑚, 𝑆 ∈ ℝ𝑚×𝑘 , 𝑉⊤ ∈ ℝ𝑘×𝑘

𝑆 is diagonal, decreasing magnitudes along the diagonal

http://www.alglib.net/matrixops/general/i/svd1.gif
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Singular Value Decomposition
By only keeping the 𝑡 singular values with largest magnitude:

෩𝑊 = ෩𝑈 ሚ𝑆 ෨𝑉⊤

◦ ෩𝑊 ∈ ℝ𝑚×𝑘 , ෩𝑈 ∈ ℝ𝑚×𝑡, ሚ𝑆 ∈ ℝ𝑡×𝑡 , ෨𝑉⊤ ∈ ℝ𝑡×𝑘

𝑅𝑎𝑛𝑘 ෩𝑊 = 𝑡
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SVD: Compression
𝑊 = 𝑈𝑆𝑉⊤,𝑊 ∈ ℝ𝑚×𝑘 , 𝑈 ∈ ℝ𝑚×𝑚, 𝑆 ∈ ℝ𝑚×𝑘 , 𝑉⊤ ∈ ℝ𝑘×𝑘

෩𝑊 = ෩𝑈 ሚ𝑆 ෨𝑉⊤, ෩𝑊 ∈ 𝑅𝑚×𝑘 , ෩𝑈 ∈ 𝑅𝑚×𝑡 , ሚ𝑆 ∈ 𝑅𝑡×𝑡 , ෨𝑉⊤ ∈ 𝑅𝑡×𝑘

Storage for 𝑊: 𝑂(𝑚𝑘)

Storage for ෩𝑊: 𝑂(𝑚𝑡 + 𝑡 + 𝑡𝑘)

Compression Rate: 𝑂
𝑚𝑘

𝑡 𝑚+𝑘+1

Theoretical error: 𝐴 ෩𝑊 − 𝐴𝑊
𝐹
≤ 𝑠𝑡+1 𝐴 𝐹

Gong, Yunchao, et al. "Compressing deep convolutional networks using vector quantization." arXiv preprint arXiv:1412.6115 (2014).
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SVD: Compression Results
Trained on ImageNet 2012 database, then compressed

5 convolutional layers, 3 fully connected layers, softmax output layer

Denton, Emily L., et al. "Exploiting linear structure within convolutional networks for efficient evaluation." Advances in Neural Information 
Processing Systems. 2014.
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𝐾 refers to rank of approximation, 𝑡 in the previous slides.



SVD: Side Benefits
Reduced memory footprint
◦ Reduced in the dense layers by 5-13x

Speedup: 𝐴 ෩𝑊,𝐴 ∈ ℝ𝑛×𝑚, computed in 𝑂 𝑛𝑚𝑡 + 𝑛𝑡2 + 𝑛𝑡𝑘 instead of 
𝑂(𝑛𝑚𝑘)

◦ Speedup factor is 𝑂
𝑚𝑘

𝑡(𝑚+𝑡+𝑘)

Regularization
◦ “Low-rank projections effectively decrease number of learnable parameters, 

suggesting that they might improve generalization ability.”

◦ Paper applies SVD after training

Denton, Emily L., et al. "Exploiting linear structure within convolutional networks for efficient evaluation." Advances in Neural Information 
Processing Systems. 2014.
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Convolutions:
Matrix Multiplication

𝐹 𝑥, 𝑦 = 𝐼 ∗ 𝑊

http://stackoverflow.com/questions/15356153/how-do-convolution-matrices-work
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Most time is spent in the convolutional layers



Flattened Convolutions
Replace 𝑐 × 𝑦 × 𝑥 convolutions with 𝑐 × 1 × 1, 1 × 𝑦 × 1, and 1 × 1 × 𝑥
convolutions

Jin, Jonghoon, Aysegul Dundar, and Eugenio Culurciello. "Flattened convolutional neural networks for feedforward acceleration." arXiv
preprint arXiv:1412.5474 (2014).
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Flattened Convolutions

෠𝐹 𝑥, 𝑦 = 𝐼 ∗ ෡𝑊 = ෍

𝑥′=1

𝑋

෍

𝑦′=1

𝑌

෍

𝑐=1

𝐶

𝐼 𝑐, 𝑥 − 𝑥′, 𝑦 − 𝑦′ 𝛼 𝑐 𝛽 𝑦′ 𝛾 𝑥′

𝛼 ∈ ℝ𝐶 , 𝛽 ∈ ℝ𝑌, 𝛾 ∈ ℝ𝑋

Compression and Speedup:
◦ Parameter reduction: O(𝑋𝑌𝐶) to O 𝑋 + 𝑌 + 𝐶

◦ Operation reduction: 𝑂(𝑚𝑛𝐶𝑋𝑌) to 𝑂 𝑚𝑛 𝐶 + 𝑋 + 𝑌 (where Wf ∈ ℝ𝑚×𝑛)

Jin, Jonghoon, Aysegul Dundar, and Eugenio Culurciello. "Flattened convolutional neural networks for feedforward acceleration." arXiv
preprint arXiv:1412.5474 (2014).
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Flattening = MF

෠𝐹 𝑥, 𝑦 = ෍

𝑥=1

𝑋

෍

𝑦′=1

𝑌

෍

𝑐=1

𝐶

𝐼 𝑐, 𝑥 − 𝑥′, 𝑦 − 𝑦′ 𝛼 𝑐 𝛽 𝑦′ 𝛾 𝑥′

= ෍

𝑥=1

𝑋

෍

𝑦′=1

𝑌

෍

𝑐=1

𝐶

𝐼 𝑐, 𝑥 − 𝑥′, 𝑦 − 𝑦′ ෡𝑊 𝑐, 𝑥′, 𝑦′

෡𝑊 = 𝛼 ⊗ 𝛽⊗ 𝛾,𝑅𝑎𝑛𝑘 ෡𝑊 = 1

෡𝑊𝑆 = σ𝑘=1
𝐾 𝛼𝑘 ⊗𝛽𝑘 ⊗𝛾𝑘, Rank 𝐾

SVD: Can reconstruct the original matrix as 𝐴 = σ𝑘=1
𝐾 𝑤𝑘𝑢𝑘⨂𝑣𝑘

Denton, Emily L., et al. "Exploiting linear structure within convolutional networks for efficient evaluation." Advances in Neural Information 
Processing Systems. 2014.
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Flattening: Speedup Results
3 convolutional layers (5x5 filters) with 96, 128, and 256 
channels

Used stacks of 2 rank-1 convolutions

Jin, Jonghoon, Aysegul Dundar, and Eugenio Culurciello. "Flattened convolutional neural networks for feedforward acceleration." arXiv
preprint arXiv:1412.5474 (2014).
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Outline

Matrix Factorization

Weight Pruning
◦ Magnitude-based method

◦ Iterative pruning + Retraining

◦ Pruning with rehabilitation

◦ Hessian-based method

Quantization method

Pruning + Quantization + Encoding 

Design small architecture: SqueezeNet
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Magnitude-based method: Iterative 
Pruning + Retraining

NETWORK COMPRESSION AND SPEEDUP 18

Han, Song, et al. "Learning both weights and connections for efficient neural network." NIPS. 2015.



Magnitude-based method: Iterative 
Pruning + Retraining (Algorithm)
1. Choose a neural network architecture.

2. Train the network until a reasonable solution is obtained.

3. Prune the weights of which magnitudes are less than a threshold 𝜏.

4. Train the network until a reasonable solution is obtained.

5. Iterate to step 3.

NETWORK COMPRESSION AND SPEEDUP 19

Han, Song, et al. "Learning both weights and connections for efficient neural network." NIPS. 2015.



Magnitude-based method: Iterative 
Pruning + Retraining (Experiment: 
AlexNet)

Layer Weights FLOP Act% Weights% FLOP%

conv1 35K 211M 88% 84% 84%

conv2 307K 448M 52% 38% 33%

conv3 885K 299M 37% 35% 18%

conv4 663K 224M 40% 37% 14%

conv5 442K 150M 34% 37% 14%

fc1 38M 75M 36% 9% 3%

fc2 17M 34M 40% 9% 3%

fc3 4M 8M 100% 25% 10

Total 61M 1.5B 54% 11% 30%
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Han, Song, et al. "Learning both weights and connections for efficient neural network." NIPS. 2015.



Magnitude-based method: Iterative 
Pruning + Retraining (Experiment: 
Tradeoff)
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Han, Song, et al. "Learning both weights and connections for efficient neural network." NIPS. 2015.



Pruning with rehabilitation: Dynamic 
Network Surgery (Motivation)
Pruned connections have no chance to come back.

Incorrect pruning may cause severe accuracy loss. 

Avoid the risk of irretrievable network damage .

Improve the learning efficiency.
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Guo, Yiwen, et al. "Dynamic Network Surgery for Efficient DNNs." NIPS. 2016.



Pruning with rehabilitation: Dynamic 
Network Surgery (Formulation)
𝑊𝑘 denotes the weights, and 𝑇𝑘 denotes the corresponding 0/1 masks.

min
𝑊𝑘,𝑇𝑘

𝐿 𝑊𝑘⨀𝑇𝑘 𝑠. 𝑡. 𝑇𝑘
(𝑖,𝑗) = ℎ𝑘 𝑊𝑘

(𝑖,𝑗) , ∀ 𝑖, 𝑗 ∈ 𝔗

◦ ⨀ is the element-wise product. 𝐿 ∙ is the loss function.

Dynamic network surgery updates only 𝑊𝑘. 𝑇𝑘 is updated based on ℎ𝑘 ∙ .

ℎ𝑘 𝑊𝑘
(𝑖,𝑗) =

0 𝑎𝑘 ≥ 𝑊𝑘
(𝑖,𝑗)

𝑇𝑘
(𝑖,𝑗) 𝑎𝑘 ≤ 𝑊𝑘

(𝑖,𝑗) ≤ 𝑏𝑘

1 𝑏𝑘 ≤ 𝑊𝑘
(𝑖,𝑗)

◦ 𝑎𝑘 is the pruning threshold. 𝑏𝑘 = 𝑎𝑘 + 𝑡, where 𝑡 is a pre-defined small margin.
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Guo, Yiwen, et al. "Dynamic Network Surgery for Efficient DNNs." NIPS. 2016.



Pruning with rehabilitation: Dynamic 
Network Surgery (Algorithm)
1. Choose a neural network architecture.

2. Train the network until a reasonable solution is obtained.

3. Update 𝑇𝑘 based on ℎ𝑘 ∙ .

4. Update 𝑊𝑘 based on back-propagation.

5. Iterate to step 3.
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Guo, Yiwen, et al. "Dynamic Network Surgery for Efficient DNNs." NIPS. 2016.



Pruning with rehabilitation: Dynamic 
Network Surgery (Experiment on AlexNet)

Layer Parameters Parameters (Han et al. 2015) Parameters (DNS)

conv1 35K 84% 53.8% 

conv2 307K 38% 40.6%

conv3 885K 35% 29.0%

conv4 664K 37% 32.3%

conv5 443K 37% 32.5%

fc1 38M 9% 3.7%

fc2 17M 9% 6.6%

fc3 4M 25% 4.6%

Total 61M 11% 5.7%
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Guo, Yiwen, et al. "Dynamic Network Surgery for Efficient DNNs." NIPS. 2016.



Outline

Matrix Factorization

Weight Pruning
◦ Magnitude-based method

◦ Hessian-based method

◦ Diagonal Hessian-based method

◦ Full Hessian-based method

Quantization method

Pruning + Quantization + Encoding 

Design small architecture: SqueezeNet 
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Diagonal Hessian-based method:
Optimal Brain Damage
The idea of model compression & speed up: traced by to 1990.

Actually theoretically more “optimal” compared with the current state of 
the art, but much more computational inefficient.

Delete parameters with small “saliency”.
◦ Saliency: effect on the training error

Propose a theoretically justified saliency measure.

NETWORK COMPRESSION AND SPEEDUP 30



Diagonal Hessian-based method:
Optimal Brain Damage (Formulation)
Approximate objective function E with Taylor series:

𝛿𝐸 = σ𝑖
𝜕𝐸

𝜕𝑢𝑖
𝛿𝑢𝑖 +

1

2
σ𝑖

𝜕2𝐸

𝜕2𝑢𝑖
𝛿2𝑢𝑖 +

1

2
σ𝑖

𝜕2𝐸

𝜕𝑢𝑖𝜕𝑢𝑗
𝛿𝑢𝑖𝛿𝑢𝑗 + Ο 𝛿𝑈 3

Deletion after training has converged: local minimum with gradients equal
0.

Neglect cross terms

𝛿𝐸 =
1

2
σ𝑖

𝜕2𝐸

𝜕2𝑢𝑖
𝛿2𝑢𝑖
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LeCun, Yann, et al. "Optimal brain damage." NIPs. Vol. 2. 1989.



Diagonal Hessian-based method:
Optimal Brain Damage (Algorithm)
1. Choose a neural network architecture.

2. Train the network until a reasonable solution is obtained.

3. Compute the second derivatives for each parameters.

4. Compute the saliencies for each parameter 𝑆𝑘 =
𝜕2𝐸

𝜕2𝑢𝑘
𝑢𝑘

2.

5. Sort the parameters by saliency and delete some low-saliency
parameters

6. Iterate to step 2
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LeCun, Yann, et al. "Optimal brain damage." NIPs. Vol. 2. 1989.



Diagonal Hessian-based method: Optimal
Brain Damage (Experiment: OBD vs. 
Magnitude)

OBD vs. Magnitude

Deletion based on
saliency performs better
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LeCun, Yann, et al. "Optimal brain damage." NIPs. Vol. 2. 1989.



Diagonal Hessian-based method: Optimal
Brain Damage (Experiment: Retraining)

How retraining
helps?
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LeCun, Yann, et al. "Optimal brain damage." NIPs. Vol. 2. 1989.

Retraining
Retraining

Without retraining Without retraining



Full Hessian-based method: Optimal
Brain Surgeon
Motivation:
◦ A more accurate estimation of saliency.

◦ Optimal weight updates.

Advantage:
◦ More accuracy estimation with saliency.

◦ Directly provide the weight updates, which minimize the change of objective function.

Disadvantage
◦ More computation compared with OBD.

◦ Weight updates are not based on minimizing the objective function.
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Hassibi, Babak, and David G. Stork. "Second order derivatives for network pruning: Optimal brain surgeon.” NIPS, 1993



Full Hessian-based method: Optimal
Brain Surgeon (Formulation)
Approximate objective function E with Taylor series:

𝛿𝐸 =
𝜕𝐸

𝜕𝑤

𝑇
∙ 𝛿𝑤 +

1

2
𝛿𝑤𝑇 ∙ 𝐻 ∙ 𝛿𝑤 + Ο 𝛿𝑊 3

◦ with constraint 𝑒𝑞
𝑇 ∙ 𝛿𝑤 + 𝑤𝑞 = 0

We assume the trained network with local minimum and ignore high order
terms. Solve it through Lagrangian form:

𝛿w = −
𝑤𝑞

𝐻−1
𝑞𝑞
𝐻−1 ∙ 𝑒𝑞 and 𝐿𝑞 =

𝑤𝑞
2

2∙ 𝐻−1
𝑞𝑞

◦ 𝐿𝑞 is saliency for weight 𝑤𝑞
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Hassibi, Babak, and David G. Stork. "Second order derivatives for network pruning: Optimal brain surgeon.” NIPS, 1993



Full Hessian-based method: Optimal
Brain Surgeon (Algorithm)
1. Choose a neural network architecture.

2. Train the network until a reasonable solution is obtained.

3. Find the 𝑞 that gives the smallest saliency 𝐿𝑞, and decide to delete 𝑞 or 
stop pruning.

4. Update all weights based on calculated 𝛿w.

5. Iterate to step 3.
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Hassibi, Babak, and David G. Stork. "Second order derivatives for network pruning: Optimal brain surgeon.” NIPS, 1993



Full Hessian-based method: Optimal
Brain Surgeon
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Hassibi, Babak, and David G. Stork. "Second order derivatives for network pruning: Optimal brain surgeon.” NIPS, 1993



Outline

Matrix Factorization

Weight Pruning

Quantization method
◦ Full Quantization

◦ Fixed-point format 

◦ Code book 

◦ Quantization with full-precision copy

Pruning + Quantization + Encoding 

Design small architecture: SqueezeNet
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Full Quantization : Fixed-point 
format
Limited Precision Arithmetic
◦ 𝑄𝐼. 𝑄𝐹 , where 𝑄𝐼 and 𝑄𝐹 correspond to the integer and the fractional part of the 

number.

◦ The number of integer bits (IL) plus the number of fractional bits (FL) yields the total 
number of bits used to represent the number.

◦ WL = IL + FL.

◦ Can be represented as 𝐼𝐿, 𝐹𝐿 .

◦ 𝐼𝐿, 𝐹𝐿 limits the precision to FL bits.

◦ 𝐼𝐿, 𝐹𝐿 sets the range to −2𝐼𝐿−1, 2𝐼𝐿−1 − 2−𝐹𝐿 .

NETWORK COMPRESSION AND SPEEDUP 40

Gupta, Suyog, et al. "Deep Learning with Limited Numerical Precision." ICML. 2015. 



Full Quantization : Fixed-point 
format (Rounding Modes)
Define 𝑥 as the largest integer multiple of 𝜖 = 2−𝐹𝐿.

Round-to-nearest:

◦ 𝑅𝑜𝑢𝑛𝑑 𝑥, 𝐼𝐿, 𝐹𝐿 = ቐ
𝑥 𝑥 ≤ 𝑥 ≤ 𝑥 +

𝜖

2

𝑥 + 𝜖 𝑥 +
𝜖

2
≤ 𝑥 ≤ 𝑥 + 𝜖

Stochastic rounding (unbiased):

◦ 𝑅𝑜𝑢𝑛𝑑 𝑥, 𝐼𝐿, 𝐹𝐿 = ൞
𝑥 𝑤. 𝑝. 1 −

𝑥− 𝑥

𝜖

𝑥 + 𝜖 𝑤. 𝑝.
𝑥− 𝑥

𝜖

If 𝑥 lies outside the range of 𝐼𝐿, 𝐹𝐿 , we saturate the result to either the lower or 
the upper limit of 𝐼𝐿, 𝐹𝐿 :  
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Gupta, Suyog, et al. "Deep Learning with Limited Numerical Precision." ICML. 2015. 



Multiply and accumulate (MACC) 
operation 
During training:

1. 𝒂 and 𝒃 are two vectors with fixed point format 𝐼𝐿, 𝐹𝐿 .

2. Compute 𝑧 = σ𝑖=1
𝑑 𝑎𝑖𝑏𝑖.

◦ Results a fixed point number with format 2 × 𝐼𝐿, 2 × 𝐹𝐿 .

3. Covert and round 𝑧 back to fixed point format 𝐼𝐿, 𝐹𝐿 .

During testing:

With fixed point format 𝐼𝐿, 𝐹𝐿 .
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Gupta, Suyog, et al. "Deep Learning with Limited Numerical Precision." ICML. 2015. 



Full Quantization: Fixed-point format
(Experiment on MNIST with CNNs)
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Gupta, Suyog, et al. "Deep Learning with Limited Numerical Precision." ICML. 2015. 



Full Quantization: Fixed-point format
(Experiment on CIFAR10 with fully 
connected DNNs)
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Gupta, Suyog, et al. "Deep Learning with Limited Numerical Precision." ICML. 2015. 



Full Quantization: Code book
Quantization using k-means

◦ Perform k-means to find k centers 𝑐𝑧 for weights 𝑊.

◦ ෢𝑊𝑖𝑗 = 𝑐𝑧 where  min
𝑧

𝑊𝑖𝑗 − 𝑐𝑧
2
.

◦ Compression ratio: 32/ log2 𝑘 (codebook itself is negligible).

Product Quantization
◦ Partition 𝑊 ∈ ℝ𝑚×𝑛 colum-wise into 𝑠 submatrices 𝑊 = 𝑊1,𝑊2, ⋯ ,𝑊𝑠 .
◦ Perform k-means for elements in 𝑊𝑖 to find k centers 𝑐𝑧

𝑖 .

◦ ෢𝑊𝑗
𝑖 = 𝑐𝑧

𝑖 where  min
𝑧

𝑊𝑗
𝑖 − 𝑐𝑧

𝑖 2
.

◦ Compression ratio: 32𝑚𝑛/ 32𝑘𝑛 + log2 𝑘𝑚𝑠

Residual Quantization
◦ Quantize the vectors into k centers.
◦ Then recursively quantize the residuals for 𝑡 iterations.
◦ Compression ratio: 𝑚/ 𝑡𝑘 + log2 𝑘 ∙ 𝑡𝑛
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Gong, Yunchao, et al. "Compressing deep convolutional networks using vector quantization." arXiv preprint arXiv:1412.6115 (2014).



Full Quantization: Code book 
(Experiment on PQ)
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Full Quantization: Code book
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Gong, Yunchao, et al. "Compressing deep convolutional networks using vector quantization." arXiv preprint arXiv:1412.6115 (2014).



Outline

Matrix Factorization

Weight Pruning

Quantization method
◦ Full quantization

◦ Quantization with full-precision copy

◦ Binnaryconnect

◦ BNN

Design small architecture: SqueezeNet
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Quantization with full-precision copy: 
Binaryconnect (Motivation)
Use only two possible value (e.g. +1 or -1) for weights.

Replace many multiply-accumulate operations by simple accumulations.

Fixed-point adders are much less expensive both in terms of area and 
energy than fixed-point multiply-accumulators.
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Courbariaux, et al. "Binaryconnect: Training deep neural networks with binary weights during propagations." NIPS. 2015



Quantization with full-precision copy: 
Binaryconnect (Binarization)
Deterministic Binarization:

◦ 𝑤𝑏 = ቊ
+1 𝑖𝑓 𝑤 ≥ 0

−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Stochastic Binarization:

◦ 𝑤𝑏 = ቊ
+1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝 = 𝜎 𝑤𝑏

−1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑝

◦ 𝜎 𝑥 = 𝑐𝑙𝑖𝑝
𝑥+1

2
, 0, 1 = 𝑚𝑎𝑥 0,𝑚𝑖𝑛 1,

𝑥+1

2

Stochastic binarization is more theoretically appealing than the 
deterministic one, but harder to implement as it requires the hardware to 
generate random bits when quantizing. 
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Quantization with full-precision copy: 
Binaryconnect
1. Given the DNN input, compute the unit activations layer by layer, 
leading to the top layer which is the output of the DNN, given its input. 
This step is referred as the forward propagation. 

2. Given the DNN target, compute the training objective’s gradient w.r.t. 
each layer’s activations, starting from the top layer and going down layer 
by layer until the first hidden layer. This step is referred to as the 
backward propagation or backward phase of back-propagation. 

3. Compute the gradient w.r.t. each layer’s parameters and then update 
the parameters using their computed gradients and their previous values. 
This step is referred to as the parameter update.
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Quantization with full-precision copy: 
Binaryconnect

BinaryConnect only binarize the weights during 
the forward and backward propagations (steps 
1 and 2) but not during the parameter update 
(step 3).
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Quantization with full-precision copy: 
Binaryconnect
1. Binarize weights and perform forward pass.

2. Back propagate gradient based on binarized weights.

3. Update the full-precision weights.

4. Iterate to step 1.
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Quantization with full-precision copy: 
Binaryconnect
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Quantization with full-precision copy:
Binarized Neural Networks (Motivation)

Neural networks with both binary weights and 
activations at run-time and when computing the 
parameters’ gradient at train time. 
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Quantization with full-precision copy:
Binarized Neural Networks
Propagating Gradients Through Discretization (“straight-through estimator 
”) 
◦ 𝑞 = 𝑆𝑖𝑔𝑛 𝑟

◦ Estimator 𝑔𝑞 of the gradient 
𝜕𝐶

𝜕𝑞

◦ Straight-through estimator of 
𝜕𝐶

𝜕𝑟
:

◦ 𝑔𝑟 = 𝑔𝑞1 𝑟 ≤1

◦ Can be viewed as propagating the gradient through hard tanh

Replace multiplications with bit-shift
◦ Replace batch normalization with shift-based batch normalization 

◦ Replace ADAM with shift-based AdaMax
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Quantization with full-precision copy:
Binarized Neural Networks

NETWORK COMPRESSION AND SPEEDUP 59

Courbariaux, Matthieu, et al. "Binarized neural networks: Training deep neural networks with weights and activations constrained to+ 1 or-
1." arXiv preprint arXiv:1602.02830 (2016).



Quantization with full-precision copy:
Binarized Neural Networks
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Outline

Matrix Factorization

Weight Pruning

Quantization method

Pruning + Quantization + Encoding
◦ Deep Compression

Design small architecture: SqueezeNet
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Pruning + Quantization + Encoding: 
Deep Compression
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Pruning + Quantization + Encoding: 
Deep Compression
1. Choose a neural network architecture.

2. Train the network until a reasonable solution is obtained.

3. Prune the network with magnitude-based method until a reasonable 
solution is obtained.

4. Quantize the network with k-means based method until a reasonable 
solution is obtained.

5. Further compress the network with Huffman coding.
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Pruning + Quantization + Encoding: 
Deep Compression
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Outline

Matrix Factorization

Weight Pruning

Quantization method

Pruning + Quantization + Encoding

Design small architecture: SqueezeNet
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Design small architecture:
SqueezeNet
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Compression scheme on pre-trained model

VS

Design small CNN architecture from scratch

(also preserve accuracy?)



SqueezeNet Design Strategies

Strategy 1. Replace 3x3 filters with 1x1 filters
◦ Parameters per filter:  (3x3 filter) = 9 * (1x1 filter)

Strategy 2. Decrease the number of input channels to 3x3 filters 
◦ Total # of parameters: (# of input channels) * (# of filters) * ( # of parameters per filter)

Strategy 3. Downsample late in the network so that convolution layers 
have large activation maps 
◦ Size of activation maps: the size of input data, the choice of layers in which to 

downsample in the CNN architecture
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Microarchitecture – Fire Module

Fire module is consist of: 
◦ A squeeze convolution layer

◦ full of s1x1 # of 1x1 filters

◦ An expand layer

◦ mixture of e1x1 # of  1x1 and  e3x3 # of 3x3 filters
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Microarchitecture – Fire Module
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Squeeze Layer
Set s1x1 < (e1x1 + e3x3), 

limits the # of input channels to 3*3 filters

Strategy 2. Decrease the number of input channels to 3x3 
filters 

Total # of parameters: (# of input channels) * (# of filters) 
* ( # of parameters per filter)

How much can we limit s1x1?

Iandola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size."

Strategy 1. Replace 3*3 filters with 1*1 filters
Parameters per filter:  (3*3 filter) = 9 * (1*1 filter)

How much can we replace 3*3 with 1*1?
(e1x1 vs e3x3 )?

https://arxiv.org/pdf/1602.07360v4.pdf


Parameters in Fire Module
The # of expanded filter(ei)

ei = ei,1x1 + ei,3x3

The % of 3x3 filter in expanded layer(pct3x3)

ei,3x3 = pct3x3 * ei

The Squeeze Ratio(SR)

si,1x1 = SR *ei
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Macroarchitecture

Iandola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size."
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Strategy 3. Downsample late in the network so that 
convolution layers have large activation maps 

Size of activation maps: the size of input data, the choice 
of layers in which to downsample in the CNN architecture

These relative late placements of pooling concentrates activation 
maps at later phase to preserve higher accuracy

https://arxiv.org/pdf/1602.07360v4.pdf


Macroarchitecture
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Evaluation of Results

NETWORK COMPRESSION AND SPEEDUP 75

Iandola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size."

https://arxiv.org/pdf/1602.07360v4.pdf


Further Compression on 4.8M?

Further Compression
◦ Deep Compression + Quantization
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Takeaway
Points

Compress Pre-trained Networks

• On Single Layer:
• Fully connected layer: SVD

• Convolutional layer: Flattened Convolutions

• Weight Pruning:
• Magnitude-based pruning method is simple and 

effective, which is the first choice for weight pruning. 

• Retraining is important for model compression. 

• Weight quantization with the full-precision copy can 
prevent gradient vanishing. 

• Weight pruning, quantization, and encoding are 
independent. We can use all three methods together for 
better compression ratio. 

Design a smaller CNN architecture

• Example: SqueezeNet 
• Use of Fire module, delay pooling at later stage
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